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Abstract In this paper, we propose a very simple and fast

face recognition method and present its potential rationale.

This method first selects only the nearest training sample,

of the test sample, from every class and then expresses the

test sample as a linear combination of all the selected

training samples. Using the expression result, the proposed

method can classify the testing sample with a high accu-

racy. The proposed method can classify more accurately

than the nearest neighbor classification method (NNCM).

The face recognition experiments show that the classifi-

cation accuracy obtained using our method is usually

2–10% greater than that obtained using NNCM. Moreover,

though the proposed method exploits only one training

sample per class to perform classification, it might obtain a

better performance than the nearest feature space method

proposed in Chien and Wu (IEEE Trans Pattern Anal

Machine Intell 24:1644–1649, 2002), which depends on all

the training samples to classify the test sample. Our anal-

ysis shows that the proposed method achieves this by

modifying the neighbor relationships between the test

sample and training samples, determined by the Euclidean

metric.

Keywords Pattern recognition � Face recognition �
Computer vision � Biometrics

1 Introduction

It is remarkable that recently the researchers in the field of

pattern recognition proposed a promising image recogni-

tion method, i.e. the so-called sparse representation method

[2–4]. This method does not classify images in the con-

ventional way. It first uses a linear combination of a subset

of the training samples to express the test sample. Then, it

bases on the expression result to classify the test sample.

This method has obtained a very good performance and has

been commented as a face recognition breakthrough [5].

However, the sparse representation method has a very high

computational cost. This is mainly because it depends on

an iterative algorithm to obtain its solution. The sparse

representation method was also used for breast cancer

biomarker identification and classification [6], signal pro-

cessing [7] and image decomposition [8].

The main difference between the sparse representation

method and previous face recognition methods is as fol-

lows: previous face recognition methods are usually com-

posed of three stages: the feature extraction, classifier

selection and classification. The feature extraction stage is

usually implemented by a transform method such as the

methods based on the independent component analysis

methodology [9–11], on the principal component analy-

sis methodology [12–17] and on the discriminant analysis

methodology [18–25]. However, the sparse representation

method adopts a noticeable novel way to address the face

recognition problem. It does not contain the feature

extraction and classifier selection stages. Instead, it first

attempts to express the test sample as a sparse linear

combination of the training samples. Hereafter, the term

‘sparse linear combination of the training samples’ means

that if the test sample is expressed as a linear combination

of all the training samples, the majority of the components
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of the combination are zero. It seems that the sparse rep-

resentation method attempts to seek the potential effects of

different training samples on ‘constructing’ the test sample

and intends to classify the test sample into the class whose

training samples has the maximum effect. In other words,

this method assumes that the test sample can be approxi-

mated by the sum of the effects of the training samples

from different classes and the class that has the maximum

effect is the most similar to the test sample.

In this paper, we propose a very simple and fast face

recognition method. This method is partially similar to the

sparse representation method, whereas it is computation-

ally much more efficient. Moreover, our method has a

distinctive characteristic that its solution can be solved with

ease. The proposed method first selects only one neighbor

sample, for the test sample, from each class and then

expresses the test sample as a linear combination of all the

selected neighbor samples. Finally, the method constructs a

classification procedure on the basis of the expression

result. The proposed method performs well in face recog-

nition applications.

As the proposed method uses only L training samples to

express and classify the test sample (L is the number of all

the classes), it is also a sparse representation method and is

able to inherit the advantages of this kind of method. The

analysis also demonstrates that the training samples

selected and used by our method are the most suitable ones

that can produce the minimum classification error. In other

words, if we use other L training samples to express and

classify the test sample, we will obtain a higher classifi-

cation error. The experimental result shows that the pro-

posed method outperforms the nearest neighbor

classification method (NNCM). NNCM is indeed a special

form of the k nearest neighbor classifier [26]. NNCM first

determines the training sample that is the nearest to the test

sample and then classifies the test sample into the class of

the training sample. It seems that the proposed method

achieves this by modifying the neighbor relationships,

between the test sample and training samples, determined

by the Euclidean metric. Moreover, though our method

depends on much fewer training samples to perform clas-

sification than the NFS method proposed in [1], it might

obtain a better performance.

The rest of the paper is organized as follows: Sect. 2

describes our method. Section 3 provides our analysis of

the proposed method. Section 4 presents our experiments

and results. Section 5 offers our conclusion.

2 The proposed method

In this section, we formally describe our proposed method.

This method consists of two processes. The first process

selects the nearest training sample, of the test sample, from

every class. Supposing there are L classes, we obtain

L nearest training samples (NTS), for the test sample, each

being from one class. The second process expresses the test

sample as a linear combination of all the selected L NTSs

and exploits the determined linear combination to classify

the test sample. Hereafter, we assume that each training

and testing samples are all column vectors.

The first process of our proposed method works as fol-

lows: let Ak
i (i = 1, 2, ��� nk, k = 1,2, ��� L) denote the ith

training samples of the k th class and nk be the number of

the training samples of the k th class. This process calcu-

lates the distance between test sample y and Ak
i using

dk
i ¼ jjAk

i � yjj2: ð1Þ

If j ¼ arg min
i

dk
i , then Ak

j is identified as the nearest

training sample from the kth class. We denote Ak
j by NTSk.

Once the first process identifies all the NTSk, K = 1, 2, ���,
L, we define matrix S = [NTS1���NTSL].

The second process of our proposed method works as

follows: it assumes that test sample y can be approximately

represented by a linear combination of all the NTSk,

K = 1, 2, ���, L. In other words, it assumes that the fol-

lowing equation is approximately satisfied:

y ¼
XL

i¼1

biNTSi: ð2Þ

Eq. (2) can be rewritten into

y ¼ Sb; ð3Þ

where b = (b1���bL)T. If STS is not singular, we can obtain

the least squares solution of (3) using b = (STS)-1 STY. If

STS is nearly singular, we can solve b using b ¼ ðST Sþ
lIÞ�1ST Y , where l is a positive constant and I is the

identity. We refer to this solution scheme as regularized

solution scheme of our method. After the b is obtained, we

use ŷ to denote Sb, i.e. ŷ ¼ Sb. We refer to ŷ as the

expression result of our method. In Sect. 4, we will convert

the one-dimensional expression result into a two-dimen-

sional image, which allow us to see how the expression

result is close to the original test sample.

Eq. (2) shows that each NTS makes its own contribution

to representing the test sample and the contribution that the

ith NTS makes is bi NTSi. Moreover, the ability, of rep-

resenting the test sample, of the ith NTS can be evaluated

by the deviation between bi NTSi and Y. We define the

deviation as ei ¼ jjY � biNTSijj2. Our method regards that

the smaller ei is, the greater ability of representing the test

sample the ith NTS has. The second process identifies the

NTS that has the minimum deviation from the test sample

and classifies the test sample into the class of the identified

NTS. It should be pointed out that each class has only one
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NTS and the ith NTS corresponds to the ith class. If

et ¼ min ei, then the test sample is classified into the tth

class. We refer to the nearest neighbor from the tth class as

the nearest neighbor determined by our method.

3 Analysis of our method

In this section, we analyze our method for exploring its

characteristics. Our method differs from the sparse repre-

sentation method in [2] as follows: our method has a very

simple solution scheme, whereas the iterative solution

scheme of the sparse representation method in [2] is

computationally much inefficient. On the other hand, our

method can be viewed as a special sparse representation

method. Indeed, if the linear combination in our method is

compulsorily rewritten as a linear combination of all the

training samples, then the coefficients of the linear com-

bination of all the training samples except for NTSs should

be zero.

Although both our method and the method in [2] work

as sparse representation methods, they achieve the

sparseness in two different ways. Our method uses the first

process to produce the sparseness and it is known how

sparse the coefficients are (i.e. there are how many zero

coefficients) and which coefficients are zero. However, the

sparse representation method proposed in [2] achieves the

sparseness by its iterative solution scheme and it is not

clearly known which coefficients of the linear combination

are equal or close to zero. We also refer to our method as

‘‘hard’’ sparse representation method. On the other hand,

the method in [2] can be referred to as ‘‘soft’’ sparse rep-

resentation method.

Our method has two advantages. The first is that it

exploits only a small number of training samples to express

and classify the test sample. As a result, our method can

solve (3) computationally efficiently. When solving the

linear system shown in (3), our method needs a time

complexity of O (L2M ? L3 ? LM), where M is the

dimension of the sample vector. The NFS method in [1]

needs a time complexity of O Lðn2M þ n3 þ nMÞð Þ ¼
OðnNM þ Nn2 þ NMÞ to solve the L linear systems. n and

N are, respectively, the numbers of training samples of

each class and all the training samples. The second

advantage of our method is that though it is simple and

partially similar to NNCM, it can perform better than

NNCM as shown in Sect. 4. NNCM can be described as a

method that exploits the nearest neighbor from each class

to classify the test sample. That is, we can present NNCM

as follows: NNCM first selects the nearest neighbor from

each class for the test sample. NNCM identifies the sample

that is the closest to the test sample among the L selected

nearest neighbors (NTSs) and assumes that the test sample

is from the same class. L is the number of all the classes. It

seems that the main reason why our method outperforms

NNCM is to modify the neighbor relationships between

the test sample and training samples, determined by the

Euclidean metric. As shown in Sect. 2, in our method, the

neighbor relationships, between the test sample and train-

ing samples are ultimately determined by the deviation

between the test sample and the contribution to represent-

ing the test sample of the NTS. In other words, we can say

that our method consists of the following two procedures:

the first procedure uses the Euclidean metric to select

neighbor samples from each class for the test sample. The

second procedure using exploits the deviation defined in

Sect. 2 to reorder the neighbor relationship between the test

sample and the neighbor samples determined by the first

procedure. That is, the second procedure uses the deviation

between the test sample and the contribution to expressing

the test sample of the NTS as the metric. Using this metric,

the second procedure determines the ‘final nearest neigh-

bor’ and classifies the test sample into the class that the

‘final nearest neighbor’ belongs to. We show the flowchart

of our method using Fig. 1, which clearly shows that our

method identifies the RTS having the minimum deviation

and assumes that the test sample is from the class of the

RTS identified. We can also say that the classification in

our method is equivalent to the nearest neighbor classifi-

cation based on the metric of ‘deviation’.

When our method attempts to exploit L training samples

to express the test sample, it indeed uses the most suitable

and significant L samples. In other words, among all the

training samples, the L nearest neighbors (NTSs) are the

most L important training samples in terms of the ability of

expressing the test sample. Actually, as shown in Sect. 4, if

we use other L training samples to express and classify the

test sample, the classification performance might be very

poor.

4 Experimental results

We used the ORL [27], Yale [28] and AR [29] face

databases to test our method. The face images in the ORL

database include variations in facial expression (smiling/

not smiling, open/closed eyes) and facial detail. The sub-

jects are in an upright, frontal position with tolerance for

some tilting and rotation of up to 20�. Each of the face

images contains 112 9 92 pixels. The Yale database con-

tains face images with a variety of expressions such as

normal, sad, happy, sleepy, surprised, and winking, all

obtained under different lighting conditions. Some faces

also wear glasses. The AR face database is a large-scale

database. We used 3,120 gray face images from 120 sub-

jects from this database, each providing 26 images. These
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images were taken in two sessions [30] and show faces

with different facial expressions, in varying lighting con-

ditions and occluded in several ways. For the ORL and

Yale databases, when s samples of all the n samples per

class were used for training, we conducted experiments on

all the Cs
n training sets and Cs

n testing sets. Before imple-

menting all the methods, we converted each sample vector

into a unit vector with the length of 1 in advance. We used

the regularized solution scheme to obtain the solution of

our method and set l to 0.01. We also tested the NNCM

and the NFS method proposed in [1]. Moreover, to show

the reasonability of the way of selecting neighbors for the

test sample, we also modified our method by selecting the

first or last training sample from each class for the test

sample and by using the selected first or last training

sample to express and classify the test sample. We refer to

the methods using the first and last training samples as the

method using the first sample and the method using the last

sample, respectively. We also modified our method by

selecting the furthest neighbor, from each class, for the test

sample and exploited them to express and classify the test

Use the Euclidean 

metric to select

NTSs for the test 

sample  

Exploit NTSs to 

Construct Eq.(3) 

Solve Eq.(3) 

Calculate the deviation 

between the test sample and 

the contribution, to 

representing the test sample, 

of the NTS. 

Identify the RTS having the minimum 

deviation and assume the test sample is 

from the same class.  This is equivalent to 

the nearest neighbor classification based  

on the metric of ‘deviation’. 

L

Fig. 1 Flowchart of our method. It is clear that the classifier in our method is equivalent to the nearest neighbor classifier based on the metric of

‘deviation’

Fig. 2 The first six nearest neighbors, of one test sample of the first

subject in the AR database, determined by NNCM and our method.

Both (a) and (a’) denote the same test sample from the AR database.

b–g denote the first six ‘nearest neighbors’ determined by NNCM.

b’–g’ denote the first six nearest neighbors determined by our method

(these samples have the first six smallest deviations from the test

sample). It is clear that our method can correctly classify the test

sample, whereas NNCM will fail to do so. In this case, the first four

images of each subject were used as training samples and the

remaining samples were used as testing samples

Fig. 3 Some original test samples and the two-dimensional images

corresponding to the expression result of our method. The first and second
rows show some original test samples and the two-dimensional images

corresponding to the expression result of our method, respectively. The

third and forth rows show some other original test samples and the two-

dimensional images corresponding to the expression result of our method,

respectively. In this case, we also used the first four images of each subject

as training samples and took the remaining samples as testing samples
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sample. We refer to this method as the method using the

furthest neighbor.

Figure 2 shows the first six nearest neighbors, of one test

sample, determined by NNCM and our method on the AR

database. This figure shows that the ‘final nearest neighbor’

determined by our method [shown in 2-(b’)] is from the

same subject as the test sample, but the nearest neighbor

determined by NNCM [shown in 2-(b)] is not from the

same subject as the test sample. As a result, our method can

correctly classify the test sample, whereas NNCM will fail

to do so. Figure 3 shows some original test samples and the

two-dimensional images corresponding to the expression

result of our method. It seems that when the face was not

occluded, the two-dimensional image corresponding to the

expression result was very similar with the original test

sample. On the other hand, when the face was occluded,

the two-dimensional image corresponding to the expression

result was not very close to the original test sample.

Figure 4 shows the distances between the test sample

shown in Fig. 2 and all the 120 NTSs, the components of

the solution vector of our method and the deviation of the

test sample from the 120 NTSs. Figure 4a clearly (a) shows

that the NTS from the 30th class is the closest to the test

sample. Thus, NNCM will classify this test sample into the

30th class. However, Fig. 4c shows that the NTS from the

first class has the minimum deviation from the test sample

and our method will correctly classify the test sample.

Figure 4 visually shows that our method can ‘reorder’ the

neighbor relationships between the test sample and NTSs

by using the deviation between the test samples and NTSs.

Tables 1, 2 and 3 show the experimental results. They

show that our method always classifies more accurately

than NNCM and the method using the furthest neighbor.

For example, when the first four images per class from the

AR database were used as training samples and the others

were used as test samples, the ratios of the classification

errors obtained using our method, NNCM, the NFS method

proposed in [1] and the method using the furthest neighbor

are 31.67, 42.69, 41.86 and 45.64%, respectively. We see

that the difference between the rates of classification errors

of NNCM and our method is 11.02%. In this case, the rate

of classification errors of our method is also 10.19% lower

than that of the NFS method. Moreover, the fact that our

method always obtains a much lower error rate than the

method using the furthest neighbor, the method using the

first sample and the method using the last sample also

Fig. 4 The distances (a) between the test sample shown in Fig. 2 and

all the 120 nearest neighbor samples, the components (b) of the

solution vector of our method and the deviation (c) of the test sample

from its nearest neighbors. This figure shows that the proposed

method can ‘reorder’ the 120 nearest neighbor training samples.

a shows that the nearest neighbor from the 30th class is the closest to

the test sample (as a result, NNCM will classify this test sample into

the 30th class). b shows that the first component of the solution vector

of our method has the maximum absolute value. c shows that the

nearest neighbor from the first class has the minimum deviation from

the test sample. As a result, our method will correctly classify the test

sample. The deviation is defined in Sect. 2

b
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demonstrates that though these methods use the same

number of training samples to express and classify the test

sample, our method uses the most suitable training sam-

ples. Compared with the NFS, our method on the AR

database classified much more accurately. For the ORL and

Yale databases, the classification performance of our

method is close to that of the NFS method.

5 Conclusion

NNCM can be described as a method that exploits the

nearest neighbor from each class to classify the test sample

as follows: if there are L classes, NNCM first selects

L nearest neighbors, each being from one class, for the test

sample. NNCM then identifies the sample that is the closest

to the test sample among the L selected nearest neighbors

and assumes that the test sample is from the same class.

The method proposed in this paper also uses these nearest

neighbors from each class to express and classify the test

sample. It is remarkable that this method is able to achieve

a much lower error rate than NNCM, and the maximum

difference between the accuracies of the two methods

might be greater than 10%. Our method achieves this by

exploiting the ability of repressing the test sample of the

training sample rather than only a simple distance to

classify the test sample, which has been proven to be a

good way to produce a high classification accuracy. The

analysis also shows that for our method, the L nearest

neighbors used are the most suitable training samples to

express and classify the test sample. Moreover, though our

method is ‘sparser’ than the NFS method proposed in [1], it

might obtain a better performance. Besides the method

design and experimental analysis, this paper also visually

presents the rationale and characteristics of the proposed

method.
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method (%)
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